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A Fresh Approach 
to Assessing 

Climate Change 
Impacts on Coastal 

Hazards

6 November 2008

Today’s Talk

• Past approach to Coastal Hazards Definition Studies

• Recent climate change predictions 

• Assessing climate change as part of each coastal hazard

• Natural variability in shoreline shape and position – the immediate 

beach erosion hazard

• Using shoreline variability to assess the future beach erosion hazard, 

due to climate change

• Accomodating uncertainty through use of probabilities

Past Approach to Hazard Definition Studies

• Coastline Management Manual (1990) – Climate Change as a discrete 

hazard

• Past Hazards Definition Studies – sea level rise only

• Sea level rise with the Bruun Rule

• Beach erosion hazard with photogrammetry for one design storm event
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Recent Climate 
Change Predictions

• Range of new predictions:

– storm surge

– wave direction

– wave height (Hs max, Hs mean)

– storm frequency

– regional sea level rise

– Rainfall intensity

– Annual rainfall

(McInnes et al (2007); Macadam et 

al (2007)

• Predictions have large ranges, eg:    

-20 to +48 % change in frequency of 

storm waves from SE + S direction. 

Prediction Reference Comments

Current 2030 2070

% change % change

Extreme rainfall 

events

Annual at Wooli 

Wooli
-10 to 0 -10 to +10

Macadam et al . 

2007

Average total 

Rainfall

Annual at Wooli 

Wooli
-6 to 0 -19 to 0

Macadam et al . 

2007

Storm Surge
100 year return 

period

0.61 +/- 0.12 

(m)
+/- 1 -3 to +4

McInnes et al . 

2007

Actual change 

is 1 - 3 cm

metres metres

Mean Sea Level 

Rise

On top of global 
0.18 - 0.59 m by 

2095

0 - 0.08 0 - 0.12
McInnes et al . 

2007

1980 2030 2070

Events 

observed
% change % change

S + SE direction 17.5 -8 to +13 -20 to + 48

NE Direction 0.6 -40 to +100 -73.3 to 0

E Direction 3.1 -49.5 to +2.7 -54.5 to +35.1

SE Direction 7.9 -35.6 to -23.6 -34.4 to +50

S Direction 9.6 +3.9 to +34.1 -13.7 to +46.3

1980 2030 2070

% change % change

S + SE direction 0 to 3 -15 to +9

Max Hs (m) Max Hs (m) Max Hs (m)

S + SE direction 5.3-6.7 5.3-6.9 5.6-5.8

NE Direction 3.1-3.8 3.5-3.6 3.6-3.9

E Direction 5.0-7.0 6.0-6.2 5.3-7.8

SE Direction 5.0-6.9 4.9-6.4 5.9

S Direction 5.4-6.6 5.5-7.1 5.5-5.7

1980 2030 2070

Deg TN Deg TN Deg TN

159.4 158.6-159.6 159.4-160.6

Deg change Deg change

-0.8 to +0.3 0.1 to 1.2

% 

occurrence

% 

occurrence

% 

occurrence

25.3 - 26 25.7 - 26.3 25.3 - 28.0

Mean Hs (m) Mean Hs (m) Mean Hs (m)

1.2 - 1.4 1.3-1.4 1.3-1.4

1980 2030 2070

Mean 

Direction 

(Deg TN)

Mean 

Direction 

(Deg TN)

Mean 

Direction 

(Deg TN)

100.7-109.2 101.3-106.1 99.4-105.9

Deg Change Deg Change

-3.1 to +0.6 -1.3 to - 3.3

Mean Hs (m) Mean Hs (m) Mean Hs (m)

1.2-1.3 1.2 1.2-1.3

Swell Waves 

from 

predominant 

SSE direciton 

(135-180 Deg 

TN)

McInnes et al . 

2007

All values 

including 1980 

are based upon 

output from 

CCM2 & CCM3 

models

Swell Waves 

from full 

directional 

range (10-190 

Deg TN)

McInnes et al . 

2007

All values 

(including 

1980) based 

upon output 

from CCM2 & 

CCM3 models

Storm Wave 

Frequency by 

direction

McInnes et al . 

2007

All values 

including 1980 

are based upon 

output from 

CCM2 & CCM3 

models

Storm 

Maximum Wave 

Height (Hs Max)

McInnes et al . 

2007

All values 

including 1980 

are based upon 

output from 

CCM2 & CCM3 

models

Climate Change and Hazard Definition

• Recent predictions - no longer appropriate 

to define climate change as a separate 

hazard. 

• Climate change will modify main driver of 

coastal processes, ie wave climate

• Impact of climate change now needs to be: 

– defined for each coastal hazard and

– defined for future planning periods, eg 

(50 yr, 100 yr) 

• Examples: Coastal Entrances; Coastal 

Inundation.

Climate Variability and Future Climate 

Change Response

• South East Australian wave climate: predominantly from SSE direction, high 

energy

• Inter-annual (years +) variability in wave climate has been linked with the       

El Nino Southern Oscillation (ENSO)

• During La Nina (+ve SOI) 

– wave direction is (slightly) more northerly (easterly)

– greater wave power due to increased frequency of storms

• During El Nino (-ve SOI)

– wave direction is (slightly) more southerly

– Reduced wave power due to fewer storms

• Example: Coffs storm severity and SOI…
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Example: Storminess Vs SOI

Correlation coefficient: 0.54 (p-value = 0.002 )
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Beach Response to Wave Direction

Beach Rotation:

Short et al (2000), Ranasinghe et al (2004)

• Southern end eroded when northern end is 

accreted, and vice versa

• Longshore sediment transport driven by wave 

direction…

• More southerly waves: southern end erodes, 

northern end accretes. Associated with El Nino.

• More northerly waves; northern end erodes, 

southern end accretes. Associated with La Nina.

• Example – rotation at Campbells Beach…

Narrabeen Beach, from Ranasinghe et al. (2004)

Accretion South

Accretion North

Example: Rotation at Campbells Beach

Correlation coefficient: -0.79 (p-value = 0.004 )
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Beach Response to Storm Frequency

Beach Oscillation

• Erosion – accretion across entire beach

• Landward – seaward movement of profile

• Periods of high storm frequency (La Nina) –

general erosion of entire beach

• Calmer periods (El Nino) – general 

accretion of entire beach 

• Individual storm wave heights may be 

equally large during calm (El Nino) or 

stormy (La Nina) periods

• Beach is more or less able to withstand 

storm attack. 

Exceptional Events

• May-June 1974 = 100 year ARI (central, south NSW)

• Moruya Beach  = 93 m3/m erosion over a 7 week period. (McLean & Shen, 

2006)

• Severe beach erosion due to a series of storms, over a longer period of 

increased storm frequency

• Very high rates of erosion and accretion over 1974 – 1983, compared with 

following decades

• Such storm periods 

may be a combination 

of climatic anomalies, 

eg, strong La Nina, 

strong –ve IPO, SAM…

The Beach Erosion Hazard
• Greatest extent of erosion occurs as part of longer periods (years) of high storm 

occurrence, not just one storm of 100 ARI wave height

• Subtle but persistent changes in wave direction cause erosion at ends of the 

beach, eg 

– Beach rotation: ~ 60% of shoreline change on Narrabeen Beach (Short et al

2000)

– Beach oscillation: 80 m on Narrabeen Beach (ie, landward – seaward 

movement of profile).

– 30 m of this = beach rotation (Short & Trembanis 2000)

• Most landward shape and position of the beach (ie, extent of rotation and 

oscillation) forms the beach erosion hazard 
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Available Data to Assess Beach Erosion 

Hazard

• Photogrammetry: “snapshots” of beach profile change = short, medium 

and long term events.

• Photogrammetry back to 1942 (where possible)

• Wave time series data: from 1976 to present

• Wave direction data: from 1992 at Sydney, 1999 at Byron Bay to 

present

• Adding the SOI: measured since 1876

• Goodwin’s hind-cast wave directional time series: from 1878, eg:

– 4 – 5o more southerly wave direction between 1894 – 1914 

– Implies greater erosion in southern hooks/ends of 

connected/embayed beaches.

Method for Defining Beach Erosion Hazard

1. Determine the extent of beach response to 

wave direction, wave height, and the SOI

• Compare photogrammetry with recent (weeks –

months) and longer (1 yr +) wave climate history

• Is rotation occurring between profiles?

• What is the extent of rotation due to: 

– wave direction 

– wave height / storm severity

– the SOI

• What is extent of erosion/accretion due to:

– wave direction 

– wave height / storm severity

– the SOI

Diagram from DECC 2007

Immediate Beach Erosion Hazard

2. Determine probable shoreline positions and shape in period prior to 

photogrammetry 

• Determine more extreme events prior to photogrammetry data: 

– Periods of more southerly and / or northerly wave direction

– More extreme La Nina, El Nino cycles

• Use known beach response from photogrammetry to estimate response to the extreme 

periods

• The most landward position of beach profile due to past rotation and erosion = 

immediate beach erosion hazard

Future Beach Erosion Hazard due to 
Climate Change

Use known shoreline response to forecast future response

• Shoreline response to future wave directions, eg:

– Predict erosion at southern end using known erosion response to 

southerly wave directions

• Shoreline response future storm frequency eg:

– Predict landward movement of beach profile using known response 

to storm events.

• Define most probable landward position of shoreline due to rotation 

and erosion due to future climate in 50 and 100 years . 

Limitations

• Difficult to separate short, medium and long term trends from sporadic 

photogrammetry dates. Includes separating long term recession trends

• Beach rotation and link with SOI - so far only researched for embayed 

beaches with fine-medium grained sand.

• Response of beaches with coarse grained sand, gravels, reefs, connected 

“leaky” embayments etc to inter-annual and inter-decadal wave variability not 

yet defined

• For Coffs – may need to develop theoretical models for beach compartments 

(maybe > 1 beach), and response to wave climate.

• There is a wealth of work to assist eg, on connected embayments, coarse 

grained sands, etc

Accommodating Uncertainty

Uncertainty due to:

– Assumptions in methods 

– Limitations of methods 

– Lack of data

– Complexity of coastal 

processes

Uncertainty about climate change:

– What climate patterns will change?

– To what extent?

• Define hazards by 

probabilities, rather than 

absolute lines on a map 

• Suits risk-based approach 

frequently adopted by 

councils
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Take home messages

• Climate change is not a discrete hazard - It will modify the all of the 

coastal processes. 

• Need to define a future hazard extent for all coastal hazards due to 

climate change.  

• Shoreline variability (rotation, erosion/accretion) is linked with wave 

climate variability and ENSO, over years to decades. 

• Defining shoreline variability links to wave climate provides a method to 

define beach erosion under a future climate

• Shoreline variability moves away from focus on the individual storm 

demand

• Hazards outputs will take the form of probabilities, rather than discrete 

hazard lines, to account for uncertainty

Thank you


